Built-in tests
Independent Binomials
EqualitySampler.Simulations.proportion_test — Functionproportion_test(successes::AbstractArray{T<:Integer, 1}, observations::AbstractArray{T<:Integer, 1}, partition_prior::Union{Nothing, AbstractPartitionDistribution}; spl, mcmc_settings, ϵ, n_leapfrog, kwargs...) -> Any
Fit independent binomials to the successes and observations and explore equality constraints among the probabilities.
Arguments
successes, vector of successes.observationsvector of no trials.partition_prior, the prior to use over partitions ornothing, which implies sampling from the full model.
Keyword arguments
spl, overwrite the sampling algorithm passed to Turing. It's best to look at the source code for the parameter names and so on.mcmc_settings, settings for sampling.ϵ, passed toTuring.HMC, only used whenpartition_prior !== nothing.n_leapfrog, passed toTuring.HMC, only used whenpartition_prior !== nothing.kwargs..., passed toAbstractMCMC.sample.
Post Hoc Tests in One-Way ANOVA
EqualitySampler.Simulations.anova_test — Functionanova_test(f::StatsModels.FormulaTerm, df::DataFrames.DataFrame, args...; kwargs...) -> Any
Using the formula f and data frame df fit a one-way ANOVA.
anova_test(y::AbstractVector{var"#s199"} where var"#s199"<:AbstractFloat, g::AbstractVector{var"#s192"} where var"#s192"<:Integer, args...; kwargs...) -> Any
Using the vector y and grouping variable g fit a one-way ANOVA.
anova_test(y::AbstractVector{var"#s41"} where var"#s41"<:AbstractFloat, g::AbstractVector{var"#s40"} where var"#s40"<:(UnitRange{var"#s39"} where var"#s39"<:Integer), args...; kwargs...) -> Any
Using the vector y and grouping variable g fit a one-way ANOVA. Here g is a vector of UnitRanges where each element indicates the group membership of y.
anova_test(df::Union{DataFrames.DataFrame, EqualitySampler.Simulations.SimpleDataSet}, partition_prior::Union{Nothing, AbstractPartitionDistribution}; spl, mcmc_settings, modeltype, rng) -> Any
Arguments:
dfa DataFrame or SimpleDataSet.partition_prior::Union{Nothing, AbstractPartitionDistribution}, either nothing (i.e., fit the full model) or a subtype ofAbstractPartitionDistribution.
Keyword arguments
spl, overwrite the sampling algorithm passed to Turing. It's best to look at the source code for the parameter names and so on.mcmc_settings, settings for sampling.modeltype,:oldindicated all parameters are sampled whereasreducedindicates onlygand the partitions are sampled using an integrated representation of the posterior.rnga random number generator.